Omega-3 Augmentation of Sertraline in Treatment of Depression in Patients With Coronary Heart Disease: A Randomized Controlled Trial

Robert M. Carney; Kenneth E. Freedland; Eugene H. Rubin; et al.

http://jama.ama-assn.org/cgi/content/full/302/15/1651

Correction

Contact me if this article is corrected.

Citations

This article has been cited 2 times.
Contact me when this article is cited.

Topic collections

Psychiatry; Depression; Psychopharmacology; Cardiovascular System; Randomized Controlled Trial; Cardiovascular Disease/ Myocardial Infarction; Drug Therapy; Drug Therapy, Other
Contact me when new articles are published in these topic areas.

Subscribe
http://jama.com/subscribe

Permissions
permissions@ama-assn.org
http://pubs.ama-assn.org/misc/permissions.dtl

Email Alerts
http://jamaarchives.com/alerts

Reprints/E-prints
reprints@ama-assn.org
Omega-3 Augmentation of Sertraline in Treatment of Depression in Patients With Coronary Heart Disease
A Randomized Controlled Trial

Robert M. Carney, PhD
Kenneth E. Freedland, PhD
Eugene H. Rubin, MD, PhD
Michael W. Rich, MD
Brian C. Steinmeyer, MS
William S. Harris, PhD

Depression is a risk factor for coronary heart disease (CHD) morbidity and mortality. Low dietary intake and low serum or red blood cell levels of omega-3 fatty acids are associated with depression in patients with and without CHD and with an increased risk for cardiac mortality. Two omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), concentrate at synapses in the human brain and are essential for neuronal functioning. Eating foods or taking dietary supplements containing DHA and EPA may reduce sudden cardiac deaths in high-risk patients, improve depression, and enhance the efficacy of antidepressants.

In depressed psychiatric patients who are otherwise medically well, some studies have indicated that augmentation with omega-3 fatty acids dramatically improves the efficacy of antidepressants. In 20 patients with major depression who were taking antidepressants, Nemets and colleagues reported an 11.5-point greater improvement on the Hamilton Rating Scale for Depression (HAM-D) in patients randomly assigned to receive 2 g/d of omega-3 acid ethyl esters (930 mg of eicosapentaenoic acid [EPA] and 750 mg of docosahexaenoic acid [DHA]) (n=62) or to corn oil placebo capsules (n=60) for 10 weeks.

This randomized, double-blind, placebo-controlled superiority trial was conducted to determine whether treatment of patients with CHD and major depression with sertraline and omega-3 fatty acids did not result in superior depression outcomes at 10 weeks, compared with sertraline and placebo. Whether higher doses of omega-3 or sertraline, a different ratio of EPA to DHA, longer treatment, or omega-3 monotherapy can improve depression in patients with CHD remains to be determined.

Trial Registration clinicaltrials.gov Identifier: NCT00116857

©2009 American Medical Association. All rights reserved.

(Reprinted) JAMA, October 21, 2009—Vol 302, No. 15 1651-1657 www.jama.com
omega-3 augmentation improves the efficacy of sertraline for comorbid major depression in CHD.

METHODS
Recruitment and Eligibility

Patients were recruited between May 2005 and December 2008 from cardiology practices in St Louis, Missouri, and from cardiac diagnostic laboratories affiliated with Washington University School of Medicine. Patients were informed about the study by their physicians, study staff, or pamphlets placed in cardiology offices and diagnostic laboratories. Patients who provided written informed consent and who had CHD as documented by at least 50% stenosis in at least 1 major coronary artery, a history of revascularization, or hospitalization for an acute coronary syndrome completed the Patient Health Questionnaire 9 for depression.22

Exclusions were (1) cognitive impairment, comorbid psychiatric disorders, psychosis, high risk of suicide, or current substance abuse; (2) an acute coronary syndrome within the previous 2 months, a left ventricular ejection fraction of less than 30%, advanced malignancy, or physical inability to participate; (3) use of antidepressants, anticonvulsants, lithium, or omega-3 supplements; (4) sensitivity to sertraline or omega-3; and (5) physician or patient refusal.

Patients who scored 10 or higher on the Patient Health Questionnaire 9 were scheduled for a structured clinical interview.23 Those who met Diagnostic and Statistical Manual of Mental Disorders (Fourth Edition) (DSM-IV) criteria for a current major depressive episode and who scored at least 16 on the BDI-II, recorded the number taken. The participant was fit to remain in the study. Participants who continued to meet the DSM-IV criteria for major depression, scored at least 16 on the BDI-II, reported no serious adverse effects, took both drugs on at least 85% of days, and were not otherwise excluded were invited to remain in the study.

The Beck Anxiety Inventory (BAI),27 a 21-item questionnaire with scores ranging from 0 to 64 and established reliability and validity,27,28 was administered to assess the severity of anxiety symptoms. Five mL of blood was drawn for measurement of omega-3 levels in red blood cells, and the patient was fit with an ambulatory electrocardiogram monitor for a 24-hour recording.

Randomization

A SAS (SAS Institute, Cary, North Carolina) permuted-block random allocation program randomly assigned participants to receive 10 weeks of sertraline, 50 mg/d, plus 2 capsules per day of omega-3, or sertraline, 50 mg/d, plus 2 g of a corn oil placebo. The group assignments were concealed in sealed envelopes and opened at enrollment by a clinical trial pharmacist who was blinded to all baseline assessments.

Primary and Secondary Outcomes

The BDI-II is a 21-item depression symptom questionnaire with scores ranging from 0 to 64. The 17-item HAM-D measures interviewer-rated symptom severity. Both are widely used for assessing depression outcomes in clinical trials, and both have established reliability and validity.30,31 The

TREATMENT OF DEPRESSION IN PATIENTS WITH CHD

TREATMENT AND FOLLOW-UP

Only the study pharmacist and the chair of the data and safety monitoring committee were unblinded to group assignment during the trial. Depression symptoms were monitored weekly.

The participants were evaluated by the study psychiatrist (E.H.R.) or a psychiatric nurse at baseline and at 4 and 10 weeks after randomization. These 30-minute sessions included a review of symptoms, protocol adherence, and medication adverse effects. Weekly telephone contacts were made to encourage adherence, identify new depressive symptoms or suicidal ideation, and answer study-related questions. Adverse effects, adverse events, and medical status were recorded at each contact. After 10 weeks of treatment, the participants again provided a blood sample and completed the same assessments that were administered at baseline. Participants were compensated $100 for the baseline and the posttreatment assessments.

TREATMENT ADHERENCE

At each visit, participants were given enough sertraline and omega-3 or placebo capsules to last 5 to 8 days after their next scheduled visit and were instructed to return all unused medications at each visit. The remaining medications were counted and subtracted from the number provided to determine the number taken. The participants were asked to confirm that all pills removed were actually taken as prescribed. Red blood cell membrane EPA+DHA was assessed before and after treatment. It was measured by capillary gas chromatography as previously described29 and expressed as a percentage of total RBC fatty acids.

Statistical Analysis

Statistical analyses of the data were performed using SAS software (version 9.2). The data were analyzed using a repeated measures analysis of covariance to assess baseline differences among sertraline plus corn oil placebo capsules and sertraline plus omega-3 capsules. Baseline differences were followed by a within-group analysis of variance to determine differences in symptom severity and symptom ratings over time. Categorical data were analyzed using the chi-square test, and continuous data were analyzed using the Student t test for independent samples. A P value of less than .05 was considered statistically significant.
Weekly BDI-II score is the primary outcome measure. Secondary outcomes include pre-post test scores on the BDI-II, HAM-D, and BAI and response and remission rates based on BDI-II scores.

Data and Safety Monitoring

An independent cardiologist, the study investigators, and the study nurses met quarterly to review adverse events. The study pharmacist and the independent cardiologist were informed immediately about serious adverse events and quarterly about routine adverse events. At each meeting, they advised the investigators whether to continue the study based on the latest adverse event data.

Statistical Analysis

χ² Tests and analysis-of-variance models were used to compare the groups' demographic, psychiatric, and medical characteristics and to identify differences in protocol completion, adverse events, and adverse effects. Model diagnostics, including residual, influence, and outlier analyses, were performed for each statistical model.

Study discontinuation for any reason counted as a treatment failure. Efficacy analyses were conducted according to the intention-to-treat principle.²² Some of the data were plausibly missing at random, so a multiple imputation model was used to create 5 data sets. Analysis models were fitted to each imputed data set and then aggregated.

A mixed-effects linear regression model with an autoregressive covariance structure tested the primary hypothesis that the course of depression, as measured by weekly BDI-II scores, differs between conditions (treatment×time interaction).

Secondary analysis-of-covariance models were fitted to the week 10 BDI-II, HAM-D, and BAI scores. These scores were regressed on the treatment group and the baseline level.

Additional secondary analyses compared the groups’ remission (BDI-II score ≤8) and response (≥50% reduction from the baseline BDI-II score) at 10 weeks. These artificially dichotomized outcomes were regressed on the treatment group parameter in a logistic regression model. Planned comparisons tested for age, sex, and minority moderation of the primary outcome by adding interaction terms to the model. A completers analyses were also conducted. All hypothesis tests were 2-tailed, with P < .05 denoting statistical significance. No major violations of model assumptions and no influential observations were identified for any of the statistical models. SAS version 9.1 was used for all statistical analyses.

Studies published before 2004, when this study was planned, reported a 4- to 10-point greater improvement on the HAM-D and 6 points more on the BDI for those receiving an antidepressant plus omega-3 vs an antidepressant plus placebo.²⁰,²¹,²³ We conservatively projected a difference of 4 points or more on both the BDI-II and HAM-D with a within-group standard deviation of 5.0 and a 2-sided a level of .05 per comparison. Given these assumptions, the sample size needed to detect a treatment effect with 90% power is 49 patients per group. However, we aimed for 75 per group to provide 85% power to detect a 3-point difference, as a hedge against attrition.

RESULTS

Nine hundred forty-one patients expressed interest in the study (Figure 1), and 178 met the eligibility criteria and were enrolled. After 2 weeks taking sertraline, 25 mg/d, plus 2 placebo capsules per day, 122 (69%) continued to meet the eligibility criteria. Sixty of these patients were randomly assigned to the placebo group and 62 to the omega-3 group. Four patients in the placebo group and 3 in the omega-3 group dropped out of treatment. Two withdrew to try a different antidepressant, 2 had symptoms possibly related to sertraline (insomnia, dizziness), 2 refused to return without explanation, and 1 was hospitalized after experienc-

Figure 1. Participant Flow

941 Patients assessed for eligibility

766 Excluded

197 Did not meet depression criteria

284 Did not meet medical criteria

134 Logical/scheduling problems

152 Other (eg, changed mind; became too ill)

178 Enrolled and entered 2-wk pretreatment phase

56 Discontinued

22 No longer met depression criteria

4 New psychiatric exclusions (eg, psychotic episode; manic episode)

8 New medical exclusion (eg, low left ventricular ejection fraction)

7 Reported adverse effects

15 Changed mind (eg, wanted to begin omega-3 or another antidepressant; scheduling problems)

122 Randomized

60 Randomized to receive 10-wk placebo intervention

4 Discontinued treatment

1 Wanted other antidepressant

1 Adverse effects

1 Refused to continue

1 Acute hospitalization

60 Included in primary analysis

4 Excluded (discontinued treatment)

62 Randomized to receive 10-wk omega-3 intervention

3 Discontinued treatment

1 Wanted other antidepressant

1 Adverse effects

1 Refused to continue

62 Included in primary analysis

3 Excluded (discontinued treatment)

4 Participants received 25 mg of sertraline plus 2 placebo capsules daily.
ing worsening of a preexisting medical condition. Fifty-nine (95%) of the patients assigned to the omega-3 group and 56 (93%) of those assigned to the placebo group completed all phases of the study.

Baseline Characteristics
Baseline medical, demographic, and depression history data are presented in Table 1. There were no significant differences between the groups except for a higher proportion of aspirin use in the placebo group (88%) than in the omega-3 group (73%) \((\chi^2=4.79; P=0.03)\). Baseline omega-3 index levels were in the expected range. Most participants had a history of depression and depression treatment. The mean baseline BDI-II score did not differ between the omega-3 group (28.1; 95% confidence interval [CI], 25.8-30.3) and placebo group (29.0; 95% CI, 26.7-31.3) at baseline \((F_{1,110}=0.29; P=0.59)\). However, the mean HAM-D score at baseline was significantly higher in the omega-3 group than in the placebo group (21.2 [95% CI, 19.8-22.6] vs 19.2 [95% CI, 17.9-20.5]; \(t_{118}=-2.06; P=0.04\) (Table 2).

Adherence to Treatment Regimen
Adherence to the medication regimen was at least 97% in both groups for both medications (Table 2). Mean omega-3 red blood cell levels were nearly identical between the groups at baseline (4.6% [95% CI, 4.3%-5.0%] vs 4.6% [95% CI, 4.3%-5.0%]; \(F_{1,110}=0.0; P=0.95\)). At 10 weeks, mean omega-3 levels in the placebo group were unchanged from baseline, whereas in the mean omega-3 group increased to 7.6% (95% CI, 7.2%-8.0%; \(F_{1,112}=113.2; P<.001\)), as expected (Table 2). There was no difference in the mean weekly number of servings of fish consumed by the placebo group (0.70; 95% CI, 0.47-0.94) and omega-3 group (0.63; 95% CI, 0.36-0.91) during the 10 weeks of the trial \((t_{110}=0.39; P=0.69)\).

Posttreatment (10-Week) Outcomes
Primary Outcome. There was no differential improvement between groups on the BDI-II (treatment

\(t_{119}=0.12, P=0.90\) or anxiety (mean BAI scores: 11.2 [95% CI, 12.5-17.1] vs 11.6 [95% CI, 13.8-18.3]; \(t_{119}=−0.77, P=0.44\); mean HAM-D scores: 9.4 [95% CI, 7.8-11.1] vs 9.3 [95% CI, 7.7-10.9]; \(t_{115}=0.12, P=0.90\) or anxiety (mean BAI scores: 11.2 [95% CI, 12.5-17.1] vs 10.7 [95% CI, 13.8-18.3]; \(t_{113}=−0.40, P=0.69\).

The groups did not differ in rates of remission (27.4% vs 28.3%; estimated \(\Phi_{0.06}=0.96 [95\% CI, 0.43-2.15]; t_{113}=−0.11; P=0.90\).

Table 1. Baseline Demographic and Medical Characteristics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Placebo (n = 60)</th>
<th>Omega-3 (n = 62)</th>
<th>(P) Value (a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, mean (SD), y</td>
<td>58.6 (8.5)</td>
<td>58.1 (9.4)</td>
<td>.79</td>
</tr>
<tr>
<td>Female</td>
<td>19 (31.7)</td>
<td>22 (35.5)</td>
<td>.66</td>
</tr>
<tr>
<td>White</td>
<td>49 (81.7)</td>
<td>49 (79.0)</td>
<td>.71</td>
</tr>
<tr>
<td>Education >12 y</td>
<td>37 (61.7)</td>
<td>40 (64.5)</td>
<td>.74</td>
</tr>
<tr>
<td>Body mass index, mean (SD)</td>
<td>32.6 (7.3)</td>
<td>33.8 (7.2)</td>
<td>.39</td>
</tr>
<tr>
<td>Cigarette smoker</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ever</td>
<td>45 (75.0)</td>
<td>48 (77.4)</td>
<td>.75</td>
</tr>
<tr>
<td>Current</td>
<td>13 (21.7)</td>
<td>17 (27.4)</td>
<td>.46</td>
</tr>
<tr>
<td>Hypertension</td>
<td>48 (80.0)</td>
<td>46 (74.2)</td>
<td>.45</td>
</tr>
<tr>
<td>Diabetes</td>
<td>26 (43.3)</td>
<td>18 (29.0)</td>
<td>.10</td>
</tr>
<tr>
<td>History of MI/ACS</td>
<td>33 (55.0)</td>
<td>40 (64.5)</td>
<td>.28</td>
</tr>
<tr>
<td>History of CABG surgery</td>
<td>22 (36.7)</td>
<td>20 (32.3)</td>
<td>.61</td>
</tr>
<tr>
<td>History of PTCA</td>
<td>40 (66.7)</td>
<td>39 (62.9)</td>
<td>.66</td>
</tr>
<tr>
<td>Canadian Cardiovascular Society angina class</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asymptomatic</td>
<td>46 (78.0)</td>
<td>38 (61.3)</td>
<td>.14</td>
</tr>
<tr>
<td>I</td>
<td>0</td>
<td>2 (3.3)</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>3 (5.1)</td>
<td>3 (4.9)</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>1 (1.7)</td>
<td>6 (9.8)</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>9 (15.3)</td>
<td>13 (21.3)</td>
<td></td>
</tr>
<tr>
<td>Fish consumption, mean (SD), servings/wk</td>
<td>0.60 (0.66)</td>
<td>0.52 (0.73)</td>
<td>.50</td>
</tr>
<tr>
<td>Baseline medications</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspirin</td>
<td>53 (88.3)</td>
<td>45 (72.6)</td>
<td>.03</td>
</tr>
<tr>
<td>ACE inhibitors</td>
<td>28 (46.7)</td>
<td>32 (51.6)</td>
<td>.58</td>
</tr>
<tr>
<td>β-Blockers</td>
<td>50 (83.3)</td>
<td>49 (79.0)</td>
<td>.54</td>
</tr>
<tr>
<td>Statins</td>
<td>45 (75.0)</td>
<td>45 (72.6)</td>
<td>.76</td>
</tr>
<tr>
<td>Calcium channel blockers</td>
<td>14 (23.3)</td>
<td>20 (32.3)</td>
<td>.27</td>
</tr>
<tr>
<td>Lipid levels, mean (SD)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Omega-3 index, DHA + EPA, % red blood cells</td>
<td>4.6 (1.4)</td>
<td>4.6 (1.5)</td>
<td>.95</td>
</tr>
<tr>
<td>Total cholesterol, mg/dL</td>
<td>175.3 (99.8)</td>
<td>161.1 (45.1)</td>
<td>.07</td>
</tr>
<tr>
<td>HDL cholesterol, mg/dL</td>
<td>43.2 (13.0)</td>
<td>43.3 (13.8)</td>
<td>.99</td>
</tr>
<tr>
<td>Fasting triglycerides, mg/dL</td>
<td>198.3 (35.2)</td>
<td>161.6 (93.3)</td>
<td>.09</td>
</tr>
<tr>
<td>Depression</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>History of depression</td>
<td>43 (74.1)</td>
<td>38 (63.3)</td>
<td>.21</td>
</tr>
<tr>
<td>Duration of current depressive episode, mean (SD), mo</td>
<td>14.1 (18.8)</td>
<td>14.2 (15.5)</td>
<td>.98</td>
</tr>
<tr>
<td>History of depression treatment</td>
<td>39 (65.0)</td>
<td>37 (59.7)</td>
<td>.54</td>
</tr>
</tbody>
</table>

Abbreviations: ACE, angiotensin-converting enzyme; ACS, acute coronary syndrome; CABG, coronary artery bypass graft; DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; HDL, high-density lipoprotein; MI, myocardial infarction; PTCA, percutaneous transluminal coronary angioplasty.

SI conversions: To convert total and HDL cholesterol to mmol/L, multiply by 0.0259; to convert triglycerides to mmol/L, multiply by 0.0113.

*Data are reported as No. (%) unless otherwise noted.

*Tests and analysis of variance were used to determine significance.

*Body mass index is calculated as weight in kilograms divided by height in meters squared.
P = .91) or treatment response (49.0% vs 47.7%; estimated \(\psi_1 = 1.06 \) [95% CI, 0.51-2.19]; \(t_{112} = 0.15 \); \(P = .88 \)) (Table 3). Two-way interaction terms (group \times moderator) were added to the primary outcome model but provided no evidence for treatment moderation by sex (\(-2.37; 95\%\ CI, -7.87 \) to 3.12; \(t_{112} = -0.86 \); \(P = .39 \)), minority status (\(-1.31; 95\%\ CI, -7.73 \) to 5.11; \(t_{112} = -0.40 \); \(P = .69 \)), age (\(-0.25; 95\%\ CI, -0.54 \) to 0.04; \(t_{113} = -1.72 \); \(P = .09 \)), or aspirin use (0.95; 95% CI, -5.97 to 7.86; \(t_{113} = 27 \); \(P = .79 \)).

The preceding analyses were repeated for the subgroup of study completers (n = 115). No significant differences were found from the intention-to-treat analyses.

Adverse Effects and Symptoms

Overall, 22% of the placebo and 19% of the omega-3 group participants (\(\chi^2 = 0.13 \); \(P = .72 \)) reported symptoms that have been associated in previous studies with high doses of omega-3, including gastrointestinal problems and prolonged bleeding. Prolonged bleeding was reported by 1 patient in the placebo group. There was only 1 between-group difference of 5% or more for any reported symptom. Stomach upset was reported by 10% of placebo and 3% of omega-3 participants. Thus, most patients tolerated 2 g/d of omega-3 very well.

There were no differences between the groups in the frequency of any other symptoms or in adverse effects commonly reported by patients taking sertraline. Overall, 73% of the placebo group and 63% of the omega-3 group reported at least 1 new symptom during the 10 weeks of the study (\(\chi^2 = 0.38 \); \(P = .24 \)).

Safety

Fourteen adverse events resulted in either a visit to an emergency department or hospitalization. There were 4 cardiac and 4 noncardiac hospitalizations per group. One patient in the placebo group had an acute myocardial infarction, 2 omega-3 patients and 1 placebo patient underwent coronary angioplasty, 1 omega-3 patient was hospitalized for syncope, 1 placebo patient received an automatic implantable cardioverter-defibrillator, and 1 placebo patient had ablation for atrial flutter. All of the noncardiac hospitalizations were for non–life-threatening conditions. Each group had 3 emergency department visits. The reasons for these visits were for the omega-3 group, worsening heart failure, injury from a fall, and kidney stones and for the placebo group, severe influenza, allergic reaction to a nonstudy medication, and injury from a fall. None of these events were thought to be study-related.

Comment

The results of this trial do not support the hypothesis that coadministration of 2 g/d of omega-3 fatty acids improves the efficacy of 50 mg/d of sertraline in patients with major depression and CHD. This is inconsistent with 2 previous stud-

Table 2. Depression, Anxiety, and Medication Adherence at Baseline and 10 Weeks

<table>
<thead>
<tr>
<th>Measures</th>
<th>Study Group, Mean (SD)</th>
<th>Placebo (n = 60)</th>
<th>Omega-3 (n = 62)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beck Depression Inventory II</td>
<td>Baseline</td>
<td>29.0 (9.2)</td>
<td>28.1 (8.7)</td>
<td>.59</td>
</tr>
<tr>
<td></td>
<td>10 Weeks</td>
<td>14.8 (9.7)</td>
<td>16.1 (10.2)</td>
<td>.44</td>
</tr>
<tr>
<td>Hamilton Rating Scale for Depression</td>
<td>Baseline</td>
<td>19.2 (5.1)</td>
<td>21.2 (5.6)</td>
<td>.04</td>
</tr>
<tr>
<td></td>
<td>10 Weeks</td>
<td>9.1 (6.7)</td>
<td>9.7 (6.5)</td>
<td>.61</td>
</tr>
<tr>
<td>Beck Anxiety Inventory</td>
<td>Baseline</td>
<td>15.2 (9.9)</td>
<td>16.1 (8.8)</td>
<td>.59</td>
</tr>
<tr>
<td></td>
<td>10 Weeks</td>
<td>11.0 (10.1)</td>
<td>10.9 (9.2)</td>
<td>.96</td>
</tr>
<tr>
<td>Cumulative mean treatment adherence, % days pill removed</td>
<td>Omega-3/placebo</td>
<td>97.3 (3.1)</td>
<td>97.4 (4.3)</td>
<td>.97</td>
</tr>
<tr>
<td>Sertraline</td>
<td>98.5 (2.6)</td>
<td>98.6 (3.1)</td>
<td>.88</td>
<td></td>
</tr>
<tr>
<td>Omega-3 index, DHA + EPA, % red blood cells</td>
<td>Baseline</td>
<td>4.6 (1.4)</td>
<td>4.6 (1.5)</td>
<td>.95</td>
</tr>
<tr>
<td></td>
<td>10 Weeks</td>
<td>4.6 (1.2)</td>
<td>7.6 (1.8)</td>
<td><.001</td>
</tr>
</tbody>
</table>

Table 3. Primary and Secondary Depression and Anxiety Outcomes

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Model Parameter of Interest</th>
<th>ITT Parameter Estimate (95% CI)</th>
<th>Test Statistic</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekly BDI-II scores</td>
<td>Treatment (\times) time interaction ((\beta_e))</td>
<td>0.02 (0.33 to 0.36)</td>
<td>(t_{112} = -0.11)</td>
<td>.91</td>
</tr>
<tr>
<td>Secondary</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-post BDI-II scores</td>
<td>Treatment group ((\psi_1))</td>
<td>-1.26 (4.48 to 1.97)</td>
<td>(t_{112} = -0.77)</td>
<td>.44</td>
</tr>
<tr>
<td>Pre-post HAM-D scores</td>
<td>Treatment group ((\psi_1))</td>
<td>14 (2.15 to 2.44)</td>
<td>(t_{112} = 0.12)</td>
<td>.90</td>
</tr>
<tr>
<td>Pre-post BAI scores</td>
<td>Treatment group ((\psi_1))</td>
<td>0.59 (2.31 to 3.49)</td>
<td>(t_{112} = 0.40)</td>
<td>.69</td>
</tr>
<tr>
<td>Remission (BDI-II score (<=8) at 10 week)</td>
<td>Treatment group ((\psi_1))</td>
<td>0.96 (0.43 to 2.15)</td>
<td>(t_{112} = -0.11)</td>
<td>.91</td>
</tr>
<tr>
<td>Response (>50% reduction in BDI-II from baseline)</td>
<td>Treatment group ((\psi_1))</td>
<td>1.06 (0.51 to 2.19)</td>
<td>(t_{112} = 0.15)</td>
<td>.88</td>
</tr>
</tbody>
</table>

Notes:
- The \(\psi_1 \) parameter represents the difference between placebo and omega-3 group means at the posttreatment evaluation. The weekly and pre-post outcomes are adjusted for the baseline outcome measure.
- Imputation inference (ITT analysis) is based on a reference distribution with adjusted degrees of freedom (\(\chi^2 \)).
- For the dichotomous remission and response outcomes, the \(\psi_1 \) and \(\psi_2 \) estimates are reported as odds ratios; a Wald test was used to test the null hypothesis (\(H_0: \psi_1=0 \)) of no treatment group differences on the probability of remission/r.
- The placebo group is the reference group for the \(\psi_1 \) and \(\psi_2 \) model parameters.

©2009 American Medical Association. All rights reserved.
of depressed psychiatric patients in which omega-3 supplements substantially augmented the efficacy of standard antidepressants. However, other studies of depressed psychiatric patients have failed to find beneficial effects of omega-3 alone or in combination with antidepressants. A meta-analysis of 10 studies of patients with either unipolar or bipolar depression found a significant antidepressant effect for omega-3, but there was considerable heterogeneity among the studies. No reliable moderators of the antidepressant effect of omega-3 have emerged from this literature.

The participants in this study received 50 mg/d of sertraline for 10 weeks. It is possible that omega-3 augmentation would have been more effective at higher doses of the antidepressant. However, previous studies found little additional improvement in response rates with higher dosages of sertraline (100-200 mg/d), despite a significant increase in adverse effects. Furthermore, increasing the dosage of sertraline for participants who did not respond to 50 mg could have resulted in an imbalance in dosage between the groups.

The choice of the omega-3 dosage was based on a study in which higher dosages of EPA omega-3 (>1 g/d) yielded more adverse effects without any additional improvement in depression. Nevertheless, higher dosages of omega-3 might have had beneficial effects. Two Lovaza (GlaxoSthSmithKline, Middlesex, England) capsules contain a little less than 1 g of EPA. Both the pill counts and red blood cell levels of EPA and DHA indicated a very high adherence rate, suggesting that nearly all patients took at least this amount daily. The meta-analysis by Lin and Su found larger effect sizes for studies that used higher dosages of EPA, but the differences were not statistically significant and not every study using a higher dosage of EPA found it to be effective. Nevertheless, whether higher dosages of omega-3 can improve depression in patients with CHD remains unknown.

It is also possible that DHA may be more effective than EPA for depression in patients with CHD. An earlier study later confirmed, found lower serum levels of DHA but not EPA in depressed cardiac patients. Although patients in the present trial received 750 mg/d of DHA, that may not be enough to reduce depression in cardiac patients. It is possible that EPA alone or a higher ratio of EPA to DHA would have produced better depression outcomes.

The trial was limited to 10 weeks, which may not have been long enough to observe an effect. However, there is no indication that longer treatment would have favored the omega-3 group. Although both groups showed improvement, the between-group difference in weekly BDI-II scores remained nearly identical throughout the trial (Figure 2). Furthermore, earlier positive studies found effects within 10 weeks.

We proposed to enroll 175 patients and expected to randomize 150 after the 2-week run-in phase during which patients received 25 mg/d of sertraline plus placebo capsules. We actually enrolled 178 patients, but 58 were excluded or dropped out before randomization, instead of the expected 28. In most cases, this was because of improvement in depression prior to randomization, which placed the patient below the eligibility threshold (n = 22); a decision by the patient to avoid possible randomization to a placebo and to seek omega-3 and antidepressants elsewhere (n = 15); or new or previously unidentifiable medical or psychiatric exclusions (n = 12). Although the enrolled sample was smaller than planned, it was large enough to detect the expected 4-point differences on the BDI-II and HAM-D. Furthermore, 670 patients would have been required to detect an effect for the observed 1.4-point difference on the BDI-II, and this difference favored the placebo group.

Although some trials of omega-3 for depression have been strongly positive, others, including the present study, have failed to demonstrate a benefit, either alone or combined with conventional antidepressants. These contradictory findings mirror those of studies that have examined the efficacy of omega-3 supplements in reducing cardiac morbidity and mortality. Some have found that omega-3 supplements greatly reduce the incidence of sudden cardiac death. Others have failed to find a benefit, and still others have reported that omega-3 supplements increase the risk of cardiac death. These conflicting results have led to speculation about the clinical characteristics of cardiac patient subgroups who may either benefit or be harmed by omega-3 supplements. Efforts should be made to identify the characteristics of depressed patients who may benefit from omega-3 depression monotherapy or augmentation of standard antidepressants. Confirmatory prospective clinical trials should then be undertaken in these subgroups. To this end, exploratory analyses are currently being conducted to determine whether any subgroups in this study benefited from omega-3.

In conclusion, this randomized, double-blind, placebo-controlled trial found no evidence that omega-3 augmentation of sertraline is superior to sertraline plus placebo capsules for the treatment of depression in patients with major depression and established CHD. Whether higher doses of EPA, DHA, or sertraline, a longer duration of treatment, or the use of omega-3 as monotherapy can improve depression in patients with stable heart disease remains to be determined.
Author Contributions: Dr Carney had full access to all of the data in the study and takes responsibility for the integ- rity of the data and the accuracy of the data analysis. Study concept and design: Carney, Freedland, Rubin, Rich. Acquisition of data: Carney, Freedland, Rubin, Harris. Analysis and interpretation of data: Carney, Freedland, Rubin, Rich, Steinmeyer, Harris. Critical revision of the manuscript for important in- tellectual content: Carney, Freedland, Rubin, Rich. Statistical analysis: Freedland, Steinmeyer. Obtained funding: Carney, Freedland. Administrative, technical, or material support: Carney, Rubin. Study supervision: Carney, Rubin.

Financial Disclosures: Dr Carney reports that he has received an honorarium from Forest Laboratories Inc for participating in a symposium and completing a re- view of the literature concerning depression and heart disease. He or a member of his family is a stock- holder in Pfizer Inc, Forest Laboratories, and Johnson and Johnson Inc. Dr Harris reports that he is a scienti- fic advisor to Glaxo-Smith-Kline, Monsanto, Unile- ver, and Janssen. Dr Steinmeyer is a speaker for Glaxo- Smith-Kline and OmegaQuant Analytics; is a stockholder in OmegaQuant Analytics. No other dis- closures were reported.

Funding/Support: This study was supported by grant R01 HL076808-01A1 from the National Heart, Lung, and Blood Institute. GlaxoSmithKline Inc supplied omega-3 and placebo capsules and Pfizer Inc supplied placebo.

Role of the Sponsor: The peer review process of the National Institutes of Health resulted in some changes in the original design of the study prior to funding. The National Institutes of Health had no further role in study design and no role in data collection, data analysis, data interpretation, or writing of the manuscript. Dr Carney had final responsibility for the decision to submit the manuscript for publication after funding.

Additional Contributions: We thank Ronald Krone, MD, for his service on the data and safety monitor- ing committee and Judith Skala, PhD, Stephanie Porto, PharmD, Julie Nobbe, PharmD, Patricia Her- zing, RN, Cathi Klingler, RN, Carol Sparks, LPN, Tiff- fany Bonds, and Kim Metze (Washington University, St Louis, Missouri) for their contributions to the conduct of the trial. We also thank Nancy Frasure- Smith, PhD, and Francois Lepidr e, MD (University of Montreal, Montreal, Quebec, Canada) for providing valuable advice during the planning of the study. Dr Frasure-Smith and Lepidr e received payment for consultation services.

REFERENCES

37. Friesema EJ, Carney RM, et al. The Depression Interview and Structured Hamilton (DISH):